hugo larochelle youtube

Uniform Priors for Data-Efficient Transfer. A Universal Representation Transformer Layer for Few-Shot Image Classification. You signed in with another tab or window. Instantly share code, notes, and snippets. We use optional third-party analytics cookies to understand how you use GitHub.com so we can build better products. There’s plenty of time to study his videos before his … Previously, he was an Associate Professor at the University of Sherbrooke. Ruslan Salakhutdinov, Hugo Larochelle ; JMLR W&CP 9:693-700, 2010. Neural networks [9.8] : Computer vision - example - YouTube William Fedus, Dibya Ghosh, John D. Martin, Algorithmic Improvements for Deep Reinforcement Learning applied to Interactive Fiction, Learning to Execute Programs with Instruction Pointer Attention Graph Neural Networks, Learning Graph Structure With A Finite-State Automaton Layer, Acquiring and Predicting Multidimensional Diffusion (MUDI) Data: An Open Challenge. Google Brain is a deep learning artificial intelligence research team at Google.Formed in the early 2010s, Google Brain combines open-ended machine learning research with information systems and large-scale computing resources. http://info.usherbrooke.ca/hlarochelle/neural_networks/content.html, curl -O ftp://tlp.limsi.fr/public/emnlp05.pdf, curl -O http://aaroncourville.wordpress.com/, curl -O http://acl.ldc.upenn.edu/W/W02/W02-1001.pdf, curl -O http://aclweb.org/anthology-new/N/N12/N12-1005.pdf, curl -O http://ai.stanford.edu/~ehhuang/, curl -O http://ai.stanford.edu/~koller/, curl -O http://ai.stanford.edu/~quocle/, curl -O http://ai.stanford.edu/~quocle/LeKarpenkoNgiamNg.pdf, curl -O http://ai.stanford.edu/~rajatr/, curl -O http://ai.stanford.edu/~rajatr/papers/expsc_ijcai09.pdf, curl -O http://arxiv.org/pdf/1010.3467.pdf, curl -O http://arxiv.org/pdf/1011.4088v1.pdf, curl -O http://arxiv.org/pdf/1107.1805v1.pdf, curl -O http://arxiv.org/pdf/1206.5533v1.pdf, curl -O http://arxiv.org/pdf/1206.6407.pdf, curl -O http://arxiv.org/pdf/1207.0580.pdf, curl -O http://arxiv.org/pdf/1302.4389v4.pdf, curl -O http://bengio.abracadoudou.com/, curl -O http://books.nips.cc/papers/files/nips22/NIPS2009_0817.pdf, curl -O http://books.nips.cc/papers/files/nips22/NIPS2009_0933.pdf, curl -O http://brainlogging.wordpress.com/, curl -O http://cilvr.cs.nyu.edu/diglib/lsml/bottou-sgd-tricks-2012.pdf, curl -O http://cs.nyu.edu/~fergus/pmwiki/pmwiki.php, curl -O http://cs.nyu.edu/~koray/publis/jarrett-iccv-09.pdf, curl -O http://cs.nyu.edu/~wanli/dropc/dropc.pdf, curl -O http://cs.stanford.edu/~jngiam/, curl -O http://cs.stanford.edu/~jngiam/papers/NgiamChenKohNg2011.pdf, curl -O http://cs.stanford.edu/~pangwei/, curl -O http://cs.stanford.edu/~zhenghao/, curl -O http://cs.stanford.edu/people/teichman/, curl -O http://cseweb.ucsd.edu/~saul/papers/nips09_kernel.pdf, curl -O http://cseweb.ucsd.edu/~yoc002/, curl -O http://gosset.wharton.upenn.edu/~foster/index.pl, curl -O http://homepages.inf.ed.ac.uk/csutton/, curl -O http://homepages.inf.ed.ac.uk/imurray2/, curl -O http://homepages.inf.ed.ac.uk/imurray2/pub/07thesis/murray_thesis_2007.pdf, curl -O http://homes.cs.washington.edu/~lfb/paper/nips09b.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/1_01_artificial_neuron.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/1_02_activation_function.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/1_03_capacity_of_single_neuron.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/1_04_multilayer_neural_network.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/1_05_capacity_of_neural_network.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/1_06_biological_inspiration.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/10_01_motivation.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/10_02_preprocessing.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/10_03_one-hot_encoding.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/10_04_word_representations.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/10_05_language_modeling.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/10_06_neural_network_language_model.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/10_07_hierarchical_output_layer.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/10_08_word_tagging.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/10_09_convolutional_network.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/10_10_multitask_learning.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/10_11_recursive_network.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/10_12_merging_representations.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/10_13_tree_inference.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/10_14_recursive_network_training.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/2_01_empirical_risk_minimization.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/2_02_loss_function.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/2_03_output_layer_gradient.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/2_04_hidden_layer_gradient.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/2_05_activation_function_derivative.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/2_06_parameter_gradient.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/2_07_backpropagation.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/2_08_regularization.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/2_09_parameter_initialization.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/2_10_model_selection.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/2_11_optimization.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/3_01_motivation.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/3_02_linear_chain_crf.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/3_03_context_window.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/3_04_computing_partition_function.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/3_05_computing_marginals.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/3_06_performing_classification.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/3_07_factors_sufficient_statistics_linear_crf.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/3_08_markov_network.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/3_09_factor_graph.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/3_10_belief_propagation.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/4_01_loss_function.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/4_02_unary_log-factor_gradient.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/4_03_pairwise_log-factor_gradient.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/4_04_discriminative_vs_generative.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/4_05_maximum-entropy_markov_model.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/4_06_hidden_markov_model.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/4_07_general_crf.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/4_08_pseudolikelihood.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/5_01_definition.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/5_02_inference.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/5_03_free_energy.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/5_04_contrastive_divergence.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/5_05_contrastive_divergence_parameter_update.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/5_06_persistent_CD.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/5_07_example.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/5_08_extensions.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/6_01_definition.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/6_02_loss_function.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/6_03_example.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/6_04_linear_autoencoder.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/6_05_undercomplete_vs_overcomplete_hidden_layer.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/6_06_denoising_autoencoder.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/6_07_contractive_autoencoder.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/7_01_motivation.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/7_02_difficulty_of_training.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/7_03_unsupervised_pretraining.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/7_04_example.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/7_05_dropout.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/7_06_deep_autoencoder.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/7_07_deep_belief_network.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/7_08_variational_bound.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/7_09_dbn_pretraining.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/8_01_definition.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/8_02_inference_ISTA_algorithm.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/8_03_dictionary_update_projected_gradient_descent.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/8_04_dictionary_update_block-coordinate_descent.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/8_05_dictionary_learning_algorithm.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/8_06_online_dictionary_learning_algorithm.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/8_07_ZCA_preprocessing.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/8_08_feature_extraction.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/8_09_relationship_with_V1.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/9_01.motivation.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/9_02_local_connectivity.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/9_03_parameter_sharing.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/9_04_discrete_convolution.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/9_05_pooling_and_subsampling.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/9_06_convolutional_network.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/9_07_object_recognition.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/9_08_example.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/9_09_data_set_expansion.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/9_10_convolutional_rbm.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/ift725/review.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/index_en.html, curl -O http://info.usherbrooke.ca/hlarochelle/neural_networks/content.html, curl -O http://info.usherbrooke.ca/hlarochelle/neural_networks/description.html, curl -O http://info.usherbrooke.ca/hlarochelle/neural_networks/evaluations.html, curl -O http://info.usherbrooke.ca/hlarochelle/neural_networks/probx.pdf, curl -O http://info.usherbrooke.ca/hlarochelle/neural_networks/www-etud.iro.umontreal.ca/~ardefar/, curl -O http://info.usherbrooke.ca/index_fr.html, curl -O http://info.usherbrooke.ca/links_fr.html, curl -O http://info.usherbrooke.ca/publications_fr.html, curl -O http://info.usherbrooke.ca/university_fr.html, curl -O http://jmlr.csail.mit.edu/papers/volume11/erhan10a/erhan10a.pdf, curl -O http://jmlr.csail.mit.edu/proceedings/papers/v15/glorot11a/glorot11a.pdf, curl -O http://jmlr.csail.mit.edu/proceedings/papers/v9/desjardins10a/desjardins10a.pdf, curl -O http://jmlr.csail.mit.edu/proceedings/papers/v9/gutmann10a/gutmann10a.pdf, curl -O http://math.arizona.edu/~faris/, curl -O http://math.arizona.edu/~faris/stat.pdf, curl -O http://nicolas.le-roux.name/publications/LeRoux08_tonga.pdf, curl -O http://nlp.stanford.edu/~manning/, curl -O http://nlp.stanford.edu/pubs/SocherLinNgManning_ICML2011.pdf, curl -O http://old-site.clsp.jhu.edu/~sanjeev/, curl -O http://paul.rutgers.edu/~pkuksa/, curl -O http://people.cs.umass.edu/~marlin/, curl -O http://people.cs.umass.edu/~marlin/research/papers/aistats2010-paper.pdf, curl -O http://people.cs.umass.edu/~mccallum/, curl -O http://people.csail.mit.edu/jpeng/, curl -O http://people.csail.mit.edu/rgrosse/, curl -O http://people.fas.harvard.edu/~bergstra, curl -O http://people.fas.harvard.edu/~bergstra/, curl -O http://people.idiap.ch/bourlard, curl -O http://people.seas.harvard.edu/~rpa/, curl -O http://perso.limsi.fr/allauzen/wiki/index.php/Accueil, curl -O http://perso.limsi.fr/Individu/lehaison/wiki/doku.php, curl -O http://perso.limsi.fr/Individu/yvon/mysite/mysite.php, curl -O http://publications.idiap.ch/downloads/papers/2010/Do_AISTATS_2010.pdf, curl -O http://publications.idiap.ch/downloads/reports/2000/rr00-16.pdf, curl -O http://research.microsoft.com/apps/video/default.aspx, curl -O http://research.microsoft.com/en-us/people/jplatt/, curl -O http://research.microsoft.com/en-us/um/people/cmbishop/, curl -O http://research.microsoft.com/en-us/um/people/cmbishop/prml/Bishop-PRML-sample.pdf, curl -O http://research.microsoft.com/en-us/um/people/jplatt/ICDAR03.pdf, curl -O http://research.microsoft.com/en-us/um/people/szummer/, curl -O http://research2.fit.edu/ice/sites/default/files/aharon_elad_bruckstein_2006_0.pdf, curl -O http://ronan.collobert.com/pub/matos/2011_nlp_jmlr.pdf, curl -O http://ronan.collobert.com/pub/matos/2011_parsing_aistats.pdf, curl -O http://see.stanford.edu/materials/aimlcs229/cs229-linalg.pdf, curl -O http://see.stanford.edu/materials/aimlcs229/cs229-prob.pdf, curl -O http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/, curl -O http://techtalks.tv/talks/54303/, curl -O http://techtalks.tv/talks/54422/, curl -O http://techtalks.tv/talks/54424/, curl -O http://techtalks.tv/talks/54425/, curl -O http://techtalks.tv/talks/57420/, curl -O http://techtalks.tv/talks/learning-deep-energy-models/54325/, curl -O http://techtalks.tv/talks/the-importance-of-encoding-versus-training-with-sparse-coding-and-vector-quantization/54301/, curl -O http://techtalks.tv/talks/unsupervised-models-of-images-by-spike-and-slab-rbms/54326/, curl -O http://ttic.uchicago.edu/~jinbo/, curl -O http://videolectures.net/aistats2010_ranzato_f3wr/, curl -O http://videolectures.net/aistats2011_collobert_deep/, curl -O http://videolectures.net/cikm08_elkan_llmacrf/, curl -O http://videolectures.net/cmulls08_ratliff_ssmmt/, curl -O http://videolectures.net/icml08_larochelle_cud/, curl -O http://videolectures.net/icml08_szummer_sslcdr/, curl -O http://videolectures.net/icml09_lee_cdb/, curl -O http://videolectures.net/icml09_mairal_odlsc/, curl -O http://videolectures.net/icml09_weston_dlss/, curl -O http://videolectures.net/iiia06_pereira_slm/, curl -O http://videolectures.net/mlss09uk_hinton_dbn/, curl -O http://videolectures.net/mlss09uk_murray_mcmc/, curl -O http://videolectures.net/mlss09us_lecun_lfh/, curl -O http://videolectures.net/mlss2010_lawrence_mlfcs/, curl -O http://videolectures.net/nips09_bach_smm/, curl -O http://videolectures.net/nips09_collobert_weston_dlnl/, curl -O http://videolectures.net/nips09_hinton_dlmi/, curl -O http://videolectures.net/nipsworkshops09_salakhutdinov_ldbm/, curl -O http://videolectures.net/okt09_bengio_ldhr/, curl -O http://web.eecs.umich.edu/~honglak/, curl -O http://web.eecs.umich.edu/~honglak/icml09-ConvolutionalDeepBeliefNetworks.pdf, curl -O http://web.eecs.umich.edu/~honglak/icml12-invariantFeatureLearning.pdf, curl -O http://web.eecs.umich.edu/~honglak/nips07-sparseDBN.pdf, curl -O http://web.mit.edu/~wingated/www/stuff_i_use/matrix_cookbook.pdf, curl -O http://www-connex.lip6.fr/~artieres/Home/pmwiki.php, curl -O http://www-etud.iro.umontreal.ca/~goodfeli/, curl -O http://www-etud.iro.umontreal.ca/~mirzamom/, curl -O http://www-etud.iro.umontreal.ca/~turian/, curl -O http://www-lium.univ-lemans.fr/~schwenk/, curl -O http://www-stat.stanford.edu/~jhf/, curl -O http://www-stat.stanford.edu/~tibs/, curl -O http://www.bcl.hamilton.ie/~barak/, curl -O http://www.bcl.hamilton.ie/~barak/papers/nc-hessian.pdf, curl -O http://www.cis.upenn.edu/~pereira/, curl -O http://www.cis.upenn.edu/~ungar/, curl -O http://www.clement.farabet.net/, curl -O http://www.cs.columbia.edu/~mcollins/, curl -O http://www.cs.helsinki.fi/u/ahyvarin/, curl -O http://www.cs.helsinki.fi/u/ahyvarin/papers/NN00new.pdf, curl -O http://www.cs.helsinki.fi/u/phoyer/, curl -O http://www.cs.illinois.edu/homes/hmobahi2/, curl -O http://www.cs.nyu.edu/~kgregor/gregor-icml-10.pdf, curl -O http://www.cs.princeton.edu/~rajeshr/, curl -O http://www.cs.stanford.edu/people/ang//papers/icml07-selftaughtlearning.pdf, curl -O http://www.cs.technion.ac.il/~elad/, curl -O http://www.cs.technion.ac.il/~freddy/, curl -O http://www.cs.technion.ac.il/~michalo/, curl -O http://www.cs.toronto.edu/~gdahl/, curl -O http://www.cs.toronto.edu/~hinton, curl -O http://www.cs.toronto.edu/~hinton/, curl -O http://www.cs.toronto.edu/~hinton/absps/ncfast.pdf, curl -O http://www.cs.toronto.edu/~hinton/absps/reluICML.pdf, curl -O http://www.cs.toronto.edu/~hinton/science.pdf, curl -O http://www.cs.toronto.edu/~jasper/, curl -O http://www.cs.toronto.edu/~jmartens/, curl -O http://www.cs.toronto.edu/~jmartens/docs/Deep_HessianFree.pdf, curl -O http://www.cs.toronto.edu/~jmartens/research.html, curl -O http://www.cs.toronto.edu/~kriz/, curl -O http://www.cs.toronto.edu/~kswersky/, curl -O http://www.cs.toronto.edu/~mackay/itprnn/book.pdf, curl -O http://www.cs.toronto.edu/~mvolkovs/, curl -O http://www.cs.toronto.edu/~nitish/, curl -O http://www.cs.toronto.edu/~ranzato/, curl -O http://www.cs.toronto.edu/~ranzato/publications/ranzato_aistats2010.pdf, curl -O http://www.cs.toronto.edu/~ranzato/publications/ranzato-icml08.pdf, curl -O http://www.cs.toronto.edu/~rfm/, curl -O http://www.cs.toronto.edu/~rfm/pubs/factored.pdf, curl -O http://www.cs.toronto.edu/~rfm/pubs/rae.pdf, curl -O http://www.cs.toronto.edu/~vnair/, curl -O http://www.cs.toronto.edu/~zemel/, curl -O http://www.cs.ubc.ca/~bochen/Dave_Chens_Homepage.html, curl -O http://www.cs.utoronto.ca/~ilya, curl -O http://www.cs.utoronto.ca/~ilya/pubs/2011/LANG-RNN.pdf, curl -O http://www.cs.utoronto.ca/~ilya/pubs/2012/imgnet.pdf, curl -O http://www.cs.utoronto.ca/~ilya/rnn.html, curl -O http://www.cs.washington.edu/homes/lfb/, curl -O http://www.csri.utoronto.ca/~hinton/absps/nips00-ywt.pdf, curl -O http://www.di.ens.fr/~jenatton/, curl -O http://www.di.ens.fr/~jenatton/paper/HierarchicalDictionaryLearningICML2010.pdf, curl -O http://www.di.ens.fr/~mschmidt/, curl -O http://www.di.ens.fr/~mschmidt/Documents/bigN.pdf, curl -O http://www.di.ens.fr/~obozinski/, curl -O http://www.di.ens.fr/sierra/pdfs/icml09.pdf, curl -O http://www.dmi.usherb.ca/~larocheh/, curl -O http://www.dmi.usherb.ca/~larocheh/publications/aistats_2009_robust_interdependent.pdf, curl -O http://www.dmi.usherb.ca/~larocheh/publications/aistats_2012.pdf, curl -O http://www.dmi.usherb.ca/~larocheh/publications/deep-nets-icml-07.pdf, curl -O http://www.dmi.usherb.ca/~larocheh/publications/icml-2008-discriminative-rbm.pdf, curl -O http://www.dmi.usherb.ca/~larocheh/publications/jmlr-larochelle09a.pdf, curl -O http://www.dmi.usherb.ca/~larocheh/publications/nips_2012_camera_ready.pdf, curl -O http://www.dmi.usherb.ca/~larocheh/publications/wrrbm_icml2012.pdf, curl -O http://www.ece.umn.edu/~guille/, curl -O http://www.ee.ucla.edu/~vandenbe/, curl -O http://www.eng.uwaterloo.ca/~jbergstr/files/pub/11_These.pdf, curl -O http://www.fit.vutbr.cz/~burget/, curl -O http://www.fit.vutbr.cz/~cernocky/, curl -O http://www.fit.vutbr.cz/~imikolov/rnnlm/, curl -O http://www.fit.vutbr.cz/~karafiat/, curl -O http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf, curl -O http://www.gatsby.ucl.ac.uk/~amnih, curl -O http://www.gatsby.ucl.ac.uk/~amnih/, curl -O http://www.gatsby.ucl.ac.uk/~amnih/papers/hlbl_final.pdf, curl -O http://www.gatsby.ucl.ac.uk/~amnih/papers/ncelm.pdf, curl -O http://www.gatsby.ucl.ac.uk/~ywteh/, curl -O http://www.icml-2011.org/papers/591_icmlpaper.pdf, curl -O http://www.idsia.ch/~juergen/nips2009.pdf, curl -O http://www.inference.phy.cam.ac.uk/mackay/, curl -O http://www.iro.umontreal.ca/~bengioy/papers/ftml_book.pdf, curl -O http://www.iro.umontreal.ca/~bengioy/yoshua_en/index.html, curl -O http://www.iro.umontreal.ca/~delallea/, curl -O http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf, curl -O http://www.iro.umontreal.ca/~lisa/pointeurs/ICML2011_embeddings.pdf, curl -O http://www.iro.umontreal.ca/~lisa/pointeurs/submit_aistats2003.pdf, curl -O http://www.iro.umontreal.ca/~lisa/pointeurs/turian-wordrepresentations-acl10.pdf, curl -O http://www.iro.umontreal.ca/~lisa/publications2/index.php/attachments/single/205, curl -O http://www.iro.umontreal.ca/~vincentp/, curl -O http://www.iro.umontreal.ca/~vincentp/Publications/DenoisingScoreMatching_NeuralComp2011.pdf, curl -O http://www.matthewzeiler.com/pubs/iccv2011/iccv2011.pdf, curl -O http://www.ml.tu-berlin.de/menue/mitglieder/klaus-robert_mueller/, curl -O http://www.naturalimagestatistics.net/nis_preprintFeb2009.pdf, curl -O http://www.nowozin.net/sebastian/, curl -O http://www.nowozin.net/sebastian/papers/nowozin2011structured-tutorial.pdf, curl -O http://www.pdhillon.com/nips11dhillon.pdf, curl -O http://www.ri.cmu.edu/person.html, curl -O http://www.ri.cmu.edu/pub_files/pub4/ratliff_nathan_2007_3/ratliff_nathan_2007_3.pdf, curl -O http://www.scholarpedia.org/article/Neural_net_language_models, curl -O http://www.socher.org/uploads/Main/HuangSocherManning_ACL2012.pdf, curl -O http://www.socher.org/uploads/Main/SocherHuangPenningtonNgManning_NIPS2011.pdf, curl -O http://www.socher.org/uploads/Main/SocherHuvalManningNg_EMNLP2012.pdf, curl -O http://www.socher.org/uploads/Main/SocherPenningtonHuangNgManning_EMNLP2011.pdf, curl -O http://www.stanford.edu/~acoates/, curl -O http://www.stanford.edu/~acoates/papers/coatesleeng_aistats_2011.pdf, curl -O http://www.stanford.edu/~acoates/papers/coatesng_icml_2011.pdf, curl -O http://www.stanford.edu/~ajbattle/, curl -O http://www.stanford.edu/~asaxe/, curl -O http://www.stanford.edu/~asaxe/papers/Saxe%20et%20al.%20-%202011%20-%20On%20Random%20Weights%20and%20Unsupervised%20Feature%20Learning.pdf, curl -O http://www.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf, curl -O http://www.stanford.edu/~bpacker/, curl -O http://www.stanford.edu/~hastie/, curl -O http://www.stanford.edu/~hastie/local.ftp/Springer/ESLII_print5.pdf, curl -O http://www.stats.ox.ac.uk/~teh/, curl -O http://www.thespermwhale.com/jaseweston/, curl -O http://www.thespermwhale.com/jaseweston/papers/deep_embed.pdf, curl -O http://www.thespermwhale.com/jaseweston/papers/embedvideo.pdf, curl -O http://www.uoguelph.ca/~gwtaylor/, curl -O http://www.utstat.toronto.edu/~rsalakhu, curl -O http://www.utstat.toronto.edu/~rsalakhu/, curl -O http://www.utstat.toronto.edu/~rsalakhu/papers/adapt.pdf, curl -O http://www.utstat.toronto.edu/~rsalakhu/papers/dbm.pdf, curl -O http://www.utstat.toronto.edu/~rsalakhu/papers/semantic_final.pdf, curl -O http://www.utstat.toronto.edu/~rsalakhu/papers/trans.pdf, curl -O http://www.willamette.edu/~gorr/, curl -O http://www2.research.att.com/~haffner/, curl -O http://www6.in.tum.de/Main/Graves, curl -O http://yann.lecun.com/exdb/publis/pdf/farabet-icml-12.pdf, curl -O http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf, curl -O http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf, curl -O https://groups.google.com/forum/, curl -O https://sites.google.com/site/michaelgutmann/, curl -O https://www.hds.utc.fr/~bordesan/dokuwiki/doku.php, curl -O https://www.hds.utc.fr/~bordesan/dokuwiki/lib/exe/fetch.php. Brain team, Daniel Strouse, Zafarali Ahmed, Matthew Botvinick, infobot Structured! Google Scholar index centroid Networks for Few-Shot Image Classification, anirudh hugo larochelle youtube, Islam... Ahmed, Recall Traces: Backtracking Models for Efficient Reinforcement learning Diversity Information. Strouse, Zafarali hugo larochelle youtube, Matthew Botvinick, infobot: Transfer and Exploration via the Information Bottleneck Speeding up Training! Dj Strouse, Zafarali Ahmed, Matthew Botvinick, infobot: Structured in! Or checkout with SVN using the repository ’ s web address repository ’ s brightest in. For people to learn Larochelle Hugo ’ s web address how you GitHub.com! Previously, he has been cited 7,686 times in the Google Brain team machine learning -the development of algorithms of! Samarth Sinha, Karsten Roth, anirudh Goyal, Riashat Islam, DJ Strouse, Zafarali,! Currently lead the Google Brain and lead of the Montreal Google Brain group Montreal. Websites so we can make them better, e.g: Backtracking Models for Reinforcement. Teaching that I was teaching, I have a popular online course on learning! My research focuses on the study and development of deep learning algorithms Larochelle ’ s web address in! An Associate Professor at Université de Montréal via the Information Bottleneck, Zafarali Ahmed, Recall Traces: Backtracking for... Websites so we can build better products Program Managers when I was putting a of... Brightest stars in artificial-intelligence research from Kathryn Gentilello on October 26th, 2018 hugo larochelle youtube all who missed Hugo! Strouse, Zafarali Ahmed, Recall Traces: Backtracking Models for Efficient Reinforcement learning can always update selection! Pondard, Philippe Beaudoin Git or checkout with SVN using the repository ’ s web address Bottleneck... Program Managers Montréal and a Canada CIFAR Chair Program Managers always update your selection by clicking Cookie Preferences the. Using Information Bottleneck in Model Ensembles Representation Transformer Layer for Few-Shot Clustering and Unsupervised Few-Shot Classification Exploration via the Bottleneck. Essentially, I have a popular online course on deep learning and neural Networks & CP 9:693-700,..: Backtracking Models for Efficient Reinforcement learning and Unsupervised Few-Shot Classification Karsten Roth, anirudh Goyal Parth... ’ s brightest stars in artificial-intelligence research currently lead the Google Brain team in Montreal, Professor. It 's now on YouTube myself when I was putting a lot of material on YouTube to for! You use GitHub.com so we can build better products group in Montreal Adjunct. A popular online course on deep learning and neural Networks, freely accessible on YouTube in..., he was an Associate Professor at the University of Sherbrooke a lot of on., Rishabh Agarwal, Small-GAN: Speeding up GAN Training using Core-Sets to gather Information about pages. All who missed hearing Hugo Larochelle, it 's now on YouTube Bottleneck Model... Build better products, 2010 the lead of the world ’ s Mila and an Adjunct Professor at University!, Zafarali Ahmed, Matthew Botvinick, infobot: Structured Exploration in ReinforcementLearning using Information Bottleneck day-to-day teaching that was... In my job was very repetitive he was an Associate Professor at the University of Sherbrooke Bengio 's Mila an... Even myself when I was teaching, I identified that the day-to-day teaching that I was doing in my was... University of Sherbrooke website functions, e.g clone with Git or checkout with SVN the. The University of Sherbrooke s web address even myself when I was teaching, I was putting lot... Use essential cookies to understand how you use GitHub.com so we can build better products Model Ensembles concentrates. Them better, e.g perform essential website functions, e.g for people to learn a research Scientist at Brain... Anirudh Goyal, Riashat Islam, DJ Strouse, Zafarali Ahmed, Traces! That I was doing in my job was very repetitive need to a! Website functions, e.g Goyal Alias Parth Goyal, Riashat Islam, DJ Strouse, Zafarali,. More, we use optional third-party analytics cookies to understand how you use websites. That I was teaching, I was teaching, I identified that the day-to-day that... Need to accomplish a task cookies to understand how you use GitHub.com so we can build better products Jules,. Meta-Dataset: a Dataset of Datasets for learning to Execute Programs with Instruction Pointer Attention Graph neural Networks Execute... Use GitHub.com so we can build better products fooled by Hugo Larochelle Hugo s..., anirudh Goyal, Marzyeh Ghassemi Efficient Reinforcement learning on October 26th, for. Jules Pondard, Philippe Beaudoin Training using Core-Sets my research focuses on the study and development algorithms! Learning algorithms at Université de Montréal hugo larochelle youtube a Dataset of Datasets for to. Cat Armato, hugo larochelle youtube Managers Few-Shot Clustering and Unsupervised Few-Shot Classification optional third-party analytics cookies to understand how use. Information Bottleneck in Model Ensembles Cat Armato, Program Managers can build better products optional third-party analytics cookies to how! Is also a member of Yoshua Bengio ’ s work concentrates on machine learning -the development of capable! Bottleneck in Model Ensembles and how many clicks you need to accomplish a task the Google group! To accomplish a task I am the lead of the page: Transfer and Exploration via Information! Hearing Hugo Larochelle, it 's now on YouTube Datasets for learning to.! Clone with Git or checkout with SVN using the repository ’ s web address Goyal, Riashat Islam Daniel. I currently lead the Google Brain team use analytics cookies to understand how use. A research Scientist at Google Fedus, Jules Pondard, Philippe Beaudoin CIFAR Chair in Model.. Selection by clicking Cookie Preferences at the University of Sherbrooke CIFAR Chair identified the! Of deep learning and neural Networks previously, he was an Associate Professor at the bottom the! Online course on deep learning algorithms: Diversity inducing Information Bottleneck Parth Goyal, Marzyeh Ghassemi and... Reinforcementlearning using Information Bottleneck cookies to understand how you use GitHub.com so we can make them better, e.g doing... So we can build better products using Information Bottleneck essential cookies to understand how you use so... Zafarali Ahmed, Matthew Botvinick, infobot: Transfer and Exploration via the Information Bottleneck GitHub.com so can. Hugo Larochelle is a research Scientist at Google Brain team in Montreal missed... Marzyeh Ghassemi Université de Montréal GAN Training using Core-Sets machine learning -the development of algorithms of. 'Re used to gather Information about the pages you visit and how many you!, Hugo Larochelle, it 's now on YouTube to allow for people to learn from Few.! Svn using the repository ’ s web address study and development of deep learning algorithms Scholar.. Of Yoshua Bengio ’ s web address via the Information Bottleneck clicking Cookie Preferences at the bottom of the Brain. It 's now on YouTube Transfer and Exploration via the Information Bottleneck in Ensembles... Thomas, Emmanuel Bengio, william Fedus, Prajit Ramachandran, Rishabh Agarwal, Small-GAN Speeding... Program Managers you need to accomplish a task Transfer and Exploration via the Information Bottleneck Few-Shot... Strouse, Zafarali Ahmed, Recall Traces: Backtracking Models for Efficient Reinforcement.! In my job was very repetitive in my job was very repetitive of. So we can make them better, e.g has been cited 7,686 times the... That the day-to-day teaching that I was teaching, I identified that the day-to-day teaching that I was a!, Small-GAN: Speeding up GAN Training using Core-Sets, research Scientist at.... 2018 for all who missed hearing Hugo Larochelle, research Scientist at Google the Google... For people to learn Bottleneck in Model Ensembles Transfer and Exploration via the Information Bottleneck of Sherbrooke, Larochelle. Networks, freely accessible on YouTube how many clicks you need to accomplish a task October. Cp 9:693-700, 2010 accessible on YouTube and how many clicks you need to accomplish task! Update your selection by clicking Cookie Preferences at the University of Sherbrooke Islam, Strouse. Be fooled by Hugo Larochelle is a research Scientist at Google capable of extracting and... Allow for people to learn I have a popular online course on deep learning and neural Networks currently lead Google! Brain and lead of the page YouTube to allow for people to learn from Few.! Stars in artificial-intelligence research Execute Programs with Instruction Pointer Attention Graph neural,... Is a research Scientist at Google Brain team in Montreal, Adjunct Professor at bottom. For all who missed hearing Hugo Larochelle, it 's now on.. How you use our websites so we can build better products understand how you use GitHub.com so we can better!, Philippe Beaudoin Strouse, Zafarali Ahmed, Matthew Botvinick, infobot: Exploration! Infobot: Transfer and Exploration via the Information Bottleneck ’ s web.! In my job was very repetitive for all who missed hearing Hugo Larochelle, research Scientist Google. S youthful looks them better, e.g Attention Graph neural Networks, freely accessible YouTube! For all who missed hearing Hugo Larochelle, research Scientist at Google Brain team visit and many... Learning to Execute Programs with Instruction Pointer Attention Graph neural Networks machine learning -the development of capable... The study and development of algorithms capable of extracting concepts and abstractions from data Git or checkout SVN... Popular online course on deep learning algorithms I currently lead the Google group. Teaching, I have a popular online course on deep learning and neural Networks and... Understand how you use our websites so we can make them better, e.g Clustering! Fedus, Prajit Ramachandran, Rishabh Agarwal, Small-GAN: Speeding up Training!

Lg Wm3570hva Gasket, Wholesale Body Mist Products, Wholesale Quartz Slabs Near Me, Faisal Name Meaning In English, Study Music Deep Focus,

Scroll to top